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1 billion people!! =
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Temperature change (°C)

Predicted changes in annual mean temperature from 1960-1990 to 2070-2100
according to the Met Office Hadley Centre global environment model, HadGEM1.



“Business as usual”
B climate projection
from the UK’s Met
Office

+5°C for HK!
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Vulnerability to biome change during the 21st century:

»Low for tropical forests, except the eastern Amazon

Gonzalez et al. 2010 Global Ecol. Biogeogr.
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But:

There is no tropical forest
today at a mean annual
temperature >28°C

(Wright et al. 2009 Biotropica)
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Most climate models suggest a 0-15% increase in
annual rainfall over most of the region, but dry
seasons will generally be more severe.
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Problems with the current climate projections:
1.Temperature predictions are robust for a given GHG
scenario, but all other predictions are +/- model-dependent,
including rainfall in the tropics and subtropics.

2.The climate models perform badly with the monsoons
and ENSO and don’t work over rugged topography.

3.Reliable sub-100 km predictions are impossible.

4. The GHG scenarios currently used do not reflect reality.



Problems with the current climate projections:

5.0n decadal timescales, there are huge uncertainties in
carbon cycle feedbacks. Climate change will alter the
balance between CO, uptake (via NPP) and losses (via
decomposition and respiration), but we cannot even predict
the direction of the impact, never mind its magnitude.

6.The impact of ‘carbon fertilization’ from rising CO, is not
understood.

7.The capacity of long-lived plants for acclimation to new
climate conditions is unknown. Short-term experiments may
be a very poor guide.



When the climate changes, wild species can
either:

tolerate the changes (physiological acclimation)
adapt to them (genetic changes)
move

or die
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When the climate changes, wild species can
either:

tolerate the changes

adapt to them - genetic adaptation is too slow, even
in short-lived species(‘adaptational lag’)
move

Or die ===y l0ss of biodiversity and carbon storage



When the climate changes, wild species can
either:

tolerate the changes - is this possible?

move - is this possible?



When the climate changes, wild species can

either:

tolerate the changes -

is this possible?

YES? — tropical biodiversity was greatest during the

warmer parts of the Tertiary and many modern species

originated by the
early Pliocene,
when temperatures
were 3°C or more

warmer than today.
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When the climate changes, wild species can
either:

tolerate the changes - is this possible?

NO? — 3 million years of relatively cool climates have
eliminated any adaptation to warmer conditions.
Warming in the tropical lowlands will therefore lead to
“lowland biotic attrition” (Colwell et al. 2008) as
species die or move and are not replaced, since there is
no source of species adapted to warmer conditions.



When the climate changes, wild species can
either:

tolerate the changes - is this possible?

There is currently little evidence on the temperature
tolerances of tropical lowland species, but most of this
suggests that many species are near their upper limits
of thermal tolerance.
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Warming Tolerance

Thermal Safety margin
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Mean performance impact of predicted 2100 warming on insects
Impact in 2100
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Plants?
Also ‘ectotherms’
There is a variety of evidence that net carbon uptake is

reduced in relatively warm and/or dry periods, but it is
possibly being increased by rising CO, levels.



Mean annual diameter growth (mm)

Mean annual diameter growth (mm)

3.4

3.2 4

3.0 1

2.8 1

26 -

2.4 1

2.2

Tree growth in a Costa Rican
rainforest 1997-2007: 91% of
the variation explained by
“drier” season rainfall and
minimum nighttime
temperature.

600 Boo0 1000 1200 1400

January=April total rainfall (mm)

200 400

Suggests tree growth will be

34
3.2 -
2.0 1
2.8 1

28 ¢
g3

substantially reduced by even
small increases In
temperature or decreases In
rainfall.

No sign of a CO, fertilization
effect!

2.4

214 218 218 220 222

Annual mean, minimum nighttime temperature ('C)

224 Clark et al. 2009 Global Change
Biology



Mean annual diameter growth (mm)

Mean annual diameter growth (mm)

3.4

3.2 4

3.0 1

2.8 1

26 -

2.4 1

2.2

34

3.2 -

2.0 1

2.8 1

28 ¢

2.4

214

Tree growth in a Costa Rican
rainforest 1997-2007: 91% of
the variation explained by
“drier” season rainfall and
minimum nighttime
temperature.

200

600 Boo0 1000 1200 1400

January=April total rainfall (mm)

400

Suggests tree growth will be

t

-

T

e

I

-\"‘-\-\._ ==
"--\.\_-\._\_\_H_\H
-
-
ﬂ-\.___\__

' %j

-
S,
e

3

g8

substantially reduced by even
small increases In
temperature or decreases In
rainfall.

No sign of a CO0, fertilization
effect!

218 218 220 222

Annual mean, minimum nighttime temperature ("C)

224 {E—



When the climate changes, wild species can
either:

move - is this possible?



When the climate changes, wild species can
either:

move - is this possible?

Plant movements are of most concern since any failure
to track changing climate (‘migration lag’) will have
implications for carbon storage and animals.



Species movements in response to climate change
In Europe and North America, the majority of plant and
animals species for which there are good records have
responded to climate change in recent decades by
northward or upwards movements

Outside the tropics: 10 km north = 10 m upwards.

There is very little comparable data from the tropics



How far do species need to move?

Prediction is easiest for mountainous regions, where
heat stress can be avoided by movement uphill, e.g.
500 m increase in altitude could compensate for 3°C
of warming.

= ¢. 1-3 km horizontal movement in typical topography
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How far do species need to move?
Prediction is much more difficult for the lowland tropics:

1. +/- flat thermal gradient means avoiding heat stress
will need latitudinal movements of 100s of km

2. Changes in rainfall will be at least as important
3. Lowland ecosystems are highly fragmented

l.e. species will need to move 100s of km across densely
populated, fragmented landscapes
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Where will
species go when
Singapore gets
4°C warmer?

(Where
from?)

Bukit Timah Hill
<1°C cooler!

N

(too far?)



Where will
species go when
Hong Kong gets
4°C warmer?

(Where
from?)

Tai Mo Shan
5-6°C cooler

N
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Plant movements in
the tropics largely
occur as seeds in the
guts of animals.

The key question
therefore is:

How far do fruit-
eating animals move
In the time it takes a
seed to pass
through their guts?




shortest dlstances

e fey

> 10 km
only tiny
seeds

Corlett RT 2009. Biotropica 41: 5092-508. TR RS 3k Iongest









Conclusions:

1.Tropical East Asia will warm by 3-4(-67)°C over the next
100 years and there will be less predictable changes in
rainfall and other climate variables

2.The ability of tropical lowland species to tolerate these
changes without movement is largely unknown.

3.Maximum seed dispersal distances for various plant-
animal combinations range from <10 m to >10 km

4.In steep topography this may be enough for many plant
species to compensate partly or fully for projected
temperature increases, but not in the lowlands.



Conclusions:

5.Hunting is currently selectively eliminating the best long-
distance seed dispersal agents.

Synergies between climate change and other human
impacts will inevitably lead to considerable “lowland biotic
attrition” and probably to accelerating release of carbon
dioxide in equatorial regions, but the magnitude of these
Impacts cannot yet be predicted.



Conclusions:

5.Hunting is currently selectively eliminating the best long-
distance seed dispersal agents.

Synergies between climate change and other human
impacts will inevitably lead to considerable “lowland biotic
attrition” and probably to accelerating release of carbon
dioxide in equatorial regions, but the magnitude of these
Impacts cannot yet be predicted.

Steeper climatic gradients on the edge of the tropics may
reduce vulnerability in theory, but higher human population
densities and greater habitat fragmentation will have the
opposite effect.
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